Phosphatidylinositol turnover in mitogen-activated lymphocytes
نویسندگان
چکیده
Low-density (LD) lipoproteins inhibit phytohaemagglutinin-enhanced turnover of phosphatidylinositol in human peripheral lymphocytes. Turnover was assessed by 32p incorporation into phospholipids and by loss of 32p from [32P]phosphatidylinositol. Inhibition of lipid turnover by LD lipoproteins is not the result of a change in the amount of phytohaemagglutinin required for maximum cellular response. Neither phytohaemagglutinin nor LD lipoproteins influence 32p incorporation into phosphatidylethanolamine and phosphatidylcholine during the first 60 min after mitogenic challenge. The extent of inhibition of phosphatidylinositol turnover by LD lipoproteins depends on the concentration of LD lipoproteins present in the incubation medium: 50% of maximum inhibition occurs at a low-density-lipoprotein protein concentration of 33 pg/ml and maximum inhibition occurs at low-density-lipoprotein protein concentrations above 100,ug/ml. Phytohaemagglutinin stimulates 32p incorporation into phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. However, LD lipoproteins abolish 32p incorporation into phosphatidylinositol without affecting incorporation into phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. The ability of LD lipoproteins to inhibit phytohaemagglutinin-induced phosphatidylinositol turnover is mimicked by EGTA. Furthermore, inhibition of LD lipoproteins by phytohaemagglutinin-induced 32p incorporation into phosphatidylinositol correlates directly with inhibition by LD lipoproteins of Ca2+ accumulation. These results suggest that Ca2+ accumulation and turnover of phosphatidylinositol are coupled responses in lymphocytes challenged by mitogens. The step in phosphatidylinositol metabolism that is sensitive to LD lipoproteins and, by inference, that is coupled to Ca2+ accumulation is release of P32Plphosphoinositol from phosphatidylinositol.
منابع مشابه
Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase.
AU-rich elements (ARE) present in the 3' untranslated regions of many cytokines and immediate-early genes are responsible for targeting the transcripts for rapid decay. We present evidence from cotransfection experiments in NIH 3T3 cells that two signaling pathways, one involving phosphatidylinositol 3-kinase (PI3-K), and one involving the p38 mitogen-activated protein kinase (MAPK), lead to st...
متن کاملB cell receptor-mediated Syk-independent activation of phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinase pathways.
The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein...
متن کاملThe activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide.
The monosaccharide lipid A precursor, N2,O3-diacylglucosamine 1-phosphate (Escherichia coli lipid X), has been shown previously to be a potent B-lymphocyte mitogen. We now report that lipid X interacts with macrophages, stimulating turnover of phosphatidylinositol, deacylation of phospholipids, and release of arachidonic acid. In addition, the monosaccharide lipid X, the incomplete lipid A disa...
متن کاملInduction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling
T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose u...
متن کاملThe pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase.
Pyridinyl imidazole inhibitors, particularly SB203580, have been widely used to elucidate the roles of p38 mitogen-activated protein (MAP) kinase (p38/HOG/SAPKII) in a wide array of biological systems. Studies by this group and others have shown that SB203580 can have antiproliferative activity on cytokine-activated lymphocytes. However, we recently reported that the antiproliferative effects o...
متن کامل